
_
~~

7—
~
--

~~~~ 
; — —

I

1856 ~

B’
UNIVERSITY OF MARYLAND

I t -~~~~~

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

- 20742
Th~a docuxno~t has be..
for pub~1c re1c~ ie ax~d .~~~distribution is ut~Umjtsd.

~ 9 11 30 ~aO h
L ~~~~





- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . - . -~

1. Introduction

Perimeter computation i; a basic operation in image proces-

sing [RI~1 . The standard algorithms use either an array or a

chain code representation [~ reeman] for the two—valued (“binary”)a
image whose perimeter is to be computed . In this paper we present

an algorithm for computing the total perimeter (i.e., the length

of the chain codes corresponding to the black/white borders in the

image) of a binary image that is represented by a quadtree

(IKlinger , DRS, Sameti]).

We assume that the given image is a 2” by 2~
’ array of unit

square “pixels ” . The quadtree is an approach to image repre-

sentation based on successive subdivision of the array into

quadrants . In essence, we repeatedly subdivide the array in to

quadrants , subquadrants ,... until we obtain blocks (possibly

single pixels) which consist entirely of either l’s or 0’s. This

process is represented by a tree of out—degree 4 in which the

root node represents the entire array , the four sons of the root

node represent the quadrants , and the terminal nodes correspond

to those blocks of the array for which no further subdivision is

necessary . For example, Figure lb is a block decomposition of the

region in Figure la while Figure ic is the corresponding q~’ad—

tree. In general , FLACK anc WHITE square nodes represent r odes

consisting entirely of l’ s and 0’s respectively. Circular nodes,

also termed GRAY nodes, denote non-terminal nodes .

A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-
~~~~~~~~~

€;-
~
—

~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 
_ _ _

.

~~~~~

Sect.ions 2-5 present and analyze the algorithm. Included

is an informal description of the algorithm along with moti-

vating considerations. The actual algorithm is given using a

variant of ALGOL 60 [Naur] .

—--~~x
-

- .
-

- . -

-. -

.- A c ~-

Dtst . \ si ec i~~

~~~~~ 
i__ 

—~~~~ ~~— - - — - —-~~-~~~~ - - ~~~~~~~~~~~~~~~ - -~~ , ~~~~~~~~~~~~~~~~~~ 
- -,~~~~_;~ ~~~~~~~~~~~~~~~~~~~~~~~~~~



.

~ 

~~~ ~~~~~

2. Defi~iitions and Notation

Let each node in a quadtree be stored as a record contain-

ing six fields. The first five fields contain pointers to the

node ’s father and its four sons , labeled NW, NE , SE, and SW.

Given a node P and a son I, these fields are referenced as

FATHER(P) and SON(P,I) respectively . At times it is useful to

use the ‘function SONTYPE(P) where SONTYPE(P) = Q if f SON(FATHER

(P),Q) = P. The sixth field , named NODETYPE , describes the

contents of the block of the image which the node represents--

i.e., WHITE if the block contains no l’s, BLACK if the block

contains only l’s, and GRAY if it contains 0 ’s and l’s. Alter-

natively , BLACK and WHITE are terminal nodes while GRAY nodes

are non—terminal nodes.

Let the four sides of a node’s block be called its N , E, S,

and W sides. They are also termed its boundaries. The spatial

relationship between the various sides are specified by use of

the functions OPSIDE, CSIDE , and CCSIDE. OPSIDE(B) is a side

facing side B; e.g., OPSIDE(E) = W. CSIDE(B) and CCSIDE(B) cor-

respond to the sides adjacent to side B in the clockwise and

counterclockwise directions respectively ; e.g., CSIDE(E) = S and

CCSIDE(E) = N. We also define the following predicates and

functions to facilitate the expression of operations involving a

block’ s quadrants and boundaries . ADJ (B,I) is true if and only
-

~~~~~~~~~~ - - ~~ --  —- --~~



-.w~-~ .,- ,~-—--- ~~~~~ ~,.~~~~~~~~ ,—--*- —~~~~~~~ - -
~
-------

1:

1

if quadrant I is adjacent to boundary B of the node ’s block ;

e.g., ADJ(N, NW)- is true. REFLECT (B,I) yields the quadrant

which is adjacent to quadrant I along boundary B of the block

represented by I; e.g., REFLECT(W ,NW) = NE , REFLECT (E ,NW) = NE ,

a REFLECT (N,NW) = SW, and REFLECT(S,NW) = SW. QUAD(B,C) is the

quadrant which is bounded by boundaries B and C (if B and C are

not adjacent boundaries, then the value of QUAD (B ,C) is undefined’;

e.g., QUAD (N,W) = NW. Figure 2 shows the relationship between the

quadrants of a node and its boundaries.

Given a quadtree corresponding to a 2~ by 2~ array , we say

that the root node is at level n, and that a node at level i is

at a distance of n—i from the root of the tree. In other words,

for a node at level i, we must ascend n-i FATHER links to reach

the root of the tree. Note that the farthest node from the root

of the tree is at level �Ø. A node at level 0 corresponds to a

single pixel in the image.

N

NW NE

W E
SW SE

S

Figure 2. Relationship between a block ’s four quadran ts
and its boundaries.

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~



_ _ _  

__ .~7
~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 
- -;

- -

F ’
I.

3. Algorithm

The perimeter computation algorithm traverses the guadtree

in postorder (i.e., the sons of a node are visited f i r st) and

visits each BLACK—WHITE border segment once and only once.

For each BLACK terminal node, say P, the northern , eastern ,

southern , and western adjacencies are explored so that all of

the node ’s WHITE adjacent neighbors are visited. The result of

each visit is that the length of the border which is shared

between the two adjacent neighbors is included in the value of

the perimeter .

The main procedure is termed PERIMETER and is invoked with

a pointer to the root of the quadtree representing the image

and an integer corresponding to the log of the diameter of the

image (e.g., n for a 2’~ by 2~ image array). PERIMETER traverses

the tree and controls the exploration of the adjacencies of each

BLACK node. FIND_NEIGHBOR locates a neighboring node of greater

or equal size along a specified side . If the node is on the

edge of the image, then no neighbor exists in the specified

direction and NULL is returned (e.g., border segments CO and CN

in Figure ib). If the node is not on the edge of the image and n

neighbor ing BLACK or WHITE node exi sts satisfying our size cri-

teria, then a pointer to a GRAY node of equal size is re turned

(e.g., the eastern border of node C in Figure ib). In such a CCI~~- ,

procedure SUM_ADJACENT continues the search by examining all WHITE

adjacent. neighbors of smaller size and accumulating their lenqths

(e.g., block M for the eastern border of node C in Figure ib).

Note that when the neighboring node is BLACK and is of the same

or greater size , then no contribution is made to the perimeter

by the side of the node currently being examined (e.g., bordera
segment AB in Figure ib). A node having a side on the border

of the image or having a WHITE neighboring node of the same or

greater size makes a contribution to the perimeter equal to the

length of the side of the BLACK node (e.g., border segment Al

in Figure ib).

An alternative method of computing the perimeter is to apply

the algorithm in [DRS] which converts a quadtree representation

to a chain code and simply suns the lengths of the segments . Our

algorithm is simpler since it does not require the segments to

be traversed in sequence around each border. We need only in-

sure that each border segment is visited once and only once.

This is clearly true since during the tree traversal , the adja-

cencies of each BLACK node are explored at least once ; on the

other hand , each border segment is only explored once since it

must adjoin a WHITE node and our algorithm does not explore adja—

cencies of WHITE nodes.

As an example of the application of the algorithm , consider

the image given in Figure la. Figure lb is the corresponding

block decomposition and Figure ic is its quadtree representatio:~

-~~~~~ -~~~~- .~~~~~~~~_-~~~~~ - - - - ..--- ~~~~~~ - -~~~~~~~~~~~ -~~~~~ -~~~

—
~~~~~~~~~~~~~

‘
~~~~~~~~~

—-

I?

All of t te BLACK nodes have labels rang~.ng between A and G

while the WHITE nodes have labels ranging between H and S. The

BLACK nodes are labeled in the order in which their adjacencies

are explored by PERIMETER. WHITE nodes H through Q are labeled

in the order in which they are first visited by the combination

of FIND NEIGHBOR and SUM ADJACENT. Thus the adjacencies of

node A h~ive been explored before those ~f nodes B, C, etc. The

value of the perimeter is obtained by v~siting the border seg-

ments in the order AH , Al, BJ, BK , BL, CI, CM, CN , CO, EL, EP ,

FP , GQ, and GM. Assuming n=3 (i.e., blocks D, E, F, G, P , Q, R ,

and M are single pixels), the perimeter is 28. Note that nodes

D, R, and S do not contribute to the value of the perimeter

since none of their sides adjoin the border.

~~~~~~~~~~~ ~-~~~~ --~~ - - -



1~

integer procedure PERIMETER(P,LEVEL);

/*find the perimeter of a quadtree rooted at node P which

LEVEL LEVEL
spans a 2 by 2 space*/

begin

node P ,Q;

integer LEN , LEVEL ;

quadrant I;

side S;

LEN4- 0;

if GRAY (P) then

begin

~~~~~ jji{NW,NE,SW,SE}

LEN÷LEN+PERIMETER(SON(P, I) ,LEVEL-l);

end

else if BLACK(P) then

~~9-in

for S in (N ,E,S,W} do

begin

Q4-FIND NEIGHBOR(P ,S” ;

LEN4-LEN + if NULL (Q) or WHITE (Q) then 2+ LEVEL

else if GRAY(Q) then

SUM_ADJACENT (Q,QU D(0PSh1~~
(S)) ,CSiDF (~~)

OUAD (OPS!DE (~3) ,CCSIDE (S))

LEVE~~)

else 0;

end ;

end ;

return (LEN)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ---- - --
~~~ 

-

~~~

- --—- —.-——

~

— .

~~~~ --~

- ——--— -.-.——--- -- - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~ 

-- ‘~~ TLT .

4
,

in direction S. Of these 2~~
’—l neighbor pairs , 2~ have their

nearest common ancestor at level n , 21 at level n—i ,... and

at level i+l. For each node at level i having a common

ancestor at level j ,  the maximum number of nodes that will be

visited by FIND_NEIGHBOR and SUM_ADJACENT is

( j-i) + (j-i-l) + 
k=O 

= 2 ( j -i - l)  + 21+1

This is obtained by observing that the common ancestor is at

a distance of j- i and that a node at level i has a maximum of

21 adjacent neighbors (all appearing at level 0). Assuming that

node P is equally likely to occur at any level i and at any of

the ~~~~~~ positions at level i, then the average of the maximuri

number of nodes visited by FIND_NEIGHBOR and SUM_ADJACENT is

n~1 

~ 2~~~~(2(j-i-l)+2
’
~~ )i=0 j=i+ l ( 1)

n
~~

i= 0

(1) can be rewritten to yield

n—i ~~~ 2n-l-i—j (2~~ 2i+l)
i=0 j =0 ( 2 )

n .

E (2’—l)
i=O

I



- - — -
~~~ 

-
— -------

~
--

-

H
if

.1
The numerator of (2) can be simplified as follows:

n—i n— i—i . . n—i n—i—i .
E ~ 2

fl_ ~~~~1_)
(2j ~~2

1~~~~) = Z E (j .2 f h J ~~2~~~J)
i 0 j 0 i 0 j=0

n—i n—i—i / . 1’
= I I (.

~~~~~
. + — )  (3 )

i=0 j =0 ~21 ~ 2~~’
r

But n-i—i -
~ 

n— l—i
I _ _ _  

I. 
~~

j=0 2’~~ 2 j=0 2~

— 
1 n-i

2 2

Also n—i-i
I —

~~~-- = 2 ( 1  — 
~~~~

.)  ( 5 )
j=0 2~ 2

n 1

Substituting (4) and (5) into (3) yields

- + 2 1  - ___

r l ~~ ( 2
r1.~].~ 1_ ( n—i )  

+ 
2n+i—i 2

i=0 ‘ 2n—2 2n— 2.

=

n-i n-i n-i
= 2n+1 I 2 — 1 (n—i) + — 1 2 1+1

i= 0 2 i=0 i=O

= 2~~ 1(2(l - 
1) )  - 4n (n+l) + ~ .2 n+l ..2n+l~ 2

2

= 2n+2 - 4 - 2n2 - 2n + (n 1)2’~~ ÷ 2

= 2’~~~(n+l) - 2(n2+n+l) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~-~~~~~~~~~ --~~- - --~~~- -- ~~--~~~~~~~~~~


4,

4. Analysis

The running time of the perimeter computation algorithm ,

measured by the number of nodes visited , depends on the time

spent locating adjacent WHITE nodes and on the size of the quad-

tree. Adjacent WHITE nodes are located by procedures FIND_NEIGHBOR

and SUM_ADJACENT. They are invoked once for each BLACK node .

The amount of work performed by these procedures is obtained by

considering the number of nodes that are visited when an adja-

cency is being explored. Recall that we must find the neighbor ,

and if it is GRAY, then visit all adjacent WHITE neighbors of

smaller size. In the worst case we are at level n-i, with a

GRAY neighbor, and all adjacent neighbors are at level 0. In such

a case , we must visit 2~ nodes. For example , consider Figure lb

where n=3 and we wish to visit the blocks adjacent to the block

labeled C (i.e., blocks D, F, G, and M). We must visit the root

of the quadtree as well as A’ s neighboring GRAY node and all ~~~~t

its NW and SW sons--i.e., a complete binary tree of height 2.

In total, 2~=8 nodes are visited . Assuming a 2~ by 2~ random

image--i.e. , a BLACK node is equally l ikely to appear in any

position and level in a quadtree , we have the following resLilL .

Theorem 1: The average of the maximum number of nodes vis~~:ed

by each invocation of FIND_NEIGHBOR and SUM_ADJACENT is n+~ -

Proof: Given a node P at level I and a direction S, there ar~

~~~~~~ possible positions for node P and a neighbor at lev€ i



- — - 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

I

node procedure FIND_NEIGHBOR(P ,S);

/*gjven node P, return a node which is adjacent to side S of node p*/

begin
-
, node P ,Q;

side S;

if not NULL (FATHER (P ) )  and ADJ (S,SONTYPE (P)) then

r /* find a common ancestor* /

Q÷FIND_NEIGMBOR(FATHER(P) ,S)

else Q÷FATHER(P);

/*follow reflected path to locate the neighbor*/

return (if not NULL(Q) and GRAY(Q) then SON (Q,REFLECT(S,SONTYPE (~~)))

else Q);

end ;

integer procedure 504_ADJACENT (P , Ql , Q2 ,LEVEL);

/*find all WHITE descendants of node P adjacent to the perimetei -- -

i.e., in quadrants Ql and Q2, and return the length of thei r

begin

node P ;

quadrant Ql ,Q2

integer LEVEL;

return (if GRAY (P) then SUM_ADJACENT (SON (P ,Ql) . Qi ,Q2 ,LE’~ EL-i

SUM_ADJACENT(SON(P ,Q2) ,Ql,Q2,LLV E~.— ’

else if WHITE(P) then 2+LEVEL

else 0) ;

end;



- ~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - ~~~~~~ . 
-
~~

The denominaLc r of (2) can be simplified as follows:

E (2 ’— l) =
i=0

or n • 1

I (21_i) = 2
fl+ .L

2 (7)
i=0

substituting (6) and (7) into (2) yields

2~~
1(n+l)-2(n 2+n+l) — +1 - n2-n________________ —

2n+l _n_ 2

n+l as n gets large

Q.E.D.

It is useful to obtain an upper bound on the size of the quad-

tree in terms of the number of BLACK nodes. Letting B denote

the number of BLACK nodes we have

Lemma 1: The maximum number of nodes in a quadtree having B

black nodes is 4Bn+l.

Proof: Given B BLACK nodes at level 0 there is a maximum of

3B WHITE nodes at level 0. At worst there is one GRAY node at

level 1 for every BLACK node and three WHITE nodes at level 0~
and at worst three additional WHITE nodes for each such GRAY

node . Thus there exist at most 4B nodes at level 1. Repeating

the same argument for levels 2 through n—I , we have 4Bn nodes.

At level n there is only one node. Therefore, the maximum

number of nodes is 4Bn+l.

Q . E . D .

!— ~~~~~~~~~~~~~~~~~ ~~-.-•-.-w-
~~~~~~~~

— — ‘--,w ~~~~~~~~~ 
..w

~~ ~~ 
-
~~~~~ ~~~~~~~~~~~~~~~ 

—
~~~~~~

“— - 
~~~~~ ‘~:- - ~~~ 

-

~~~~~~

- ~~ ,- - - .. - 

~
-
~1

We can now prove

Theorem 2: The average worst case execution time of the

perimeter computation algorithm has an upper bound proportional

to the product of the number of BLACK nodes and the log of the

diameter of the image.

Proof: From Theorem 1 we have that for each adjacency involving

a BLACK node , FIND NEIGHBOR and SUM ADJACENT result in an

average worst case of n+l nodes being visited. There are four

adjacencies for each BLACK node. Thus these two procedures con-

tribute 4B(n+1). From Lemma 1 we have that the number of nodes

in the quadtree is bounded by 4Bn+l. However , this quan tity cor-

relates with the work performed by procedure PERIMETER since

each node in the quadtree is visited by the traversal. Summing

up these values we have 4B (n + l )  + 4Bn+l = 8Bn+4B+l .

Q.E.D.

~~~~~~~~~~~ 3 lI ~A - - _~~ _~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~


I

6. References

[DRS] C. R. Dyer, A. Rosenfeld, and H. Samet. Region repre-
sentation: boundary codes from quadtrees. Computer
Science TR-732, University of Maryland, College Park ,
Maryland, February 1979.a

[Freeman] H. Freeman, Computer processing of line-drawing images,
Computing Surveys 6, 1974, 57-97.

[Klingerj A. Kiinger and C. R. Dyer, Experiments in picture repre-
sentation using regular decomposition , Comp~iter Graphics
and Image Processing 5, 1976, 68—105.

[Naur] P. Naur (E d .) , Revised report on the algorithmic language
ALGOL 60, Communications of the ACM 3, 1960, 299-314.

[RK] A. Rosenfeld and A. C. Kak , Digital Picture Process~~9,~Academic Press, New York, 1976, Section 9.2.1.

[Sameti] H. Samet, Region representation : quadtrees from boundary
codes , Computer Science TR-741, University of Maryland ,
Coilege Park, Maryland, March 1979.

[Samet2] H. Samet, Connected component labeii.ng using quadtrees ,
Computer Science TR-756, University of Maryland , College
Park , Maryland, April 1979.

~~~~~~~~~~ -—-— - - - - - - - -  -~~~~~~~~~~~~~~~--~~~ - - ~~~~~



- - - -

5. Concluding remarks

V An algorithm has been presented for computing the total

perimeter of a binary image represented by a quadtree. The

algorithm ’s execution time has been shown to have an average

worst case time complexity proportional to the product of the

image ’s diameter and the number of BLACK nodes in the quadtree

representation of the image. It should be clear that if the

4 
image has more than one connected component, the algorithm

returns the total perimeter of all the regions. Similarly , if

holes are present , their boundaries are also included in the

value of the perimeter obtained by this algorithm. Note that

~f we first labeled the connected components of the image

[Samet2j , then the perimeter of each boundary could be separ-

ately computed .

The algorithm demonstrates the utility of the quadtree as

a desirable data structure for image representation . Computation

of perimeter is generally achieved by use of a chain code repre-

sentation. We have shown that it can be computed with reasonable

efficiency when the quadtree is used as the data structure. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ----~~ - - ~~~~~~~~~-~ ~~~~~ - -  -~


-.-~ - -
. - .

—
-~~~~ -- :~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~

H J

I .

~~~ - . 
- B  K

I -

II..__., 
- - - - .~~~ L

I 0

_ _ 

~~~~~~~G Q

N
• SAMPL E IPt~GE b , BLOCK DECOMPOSITIO N OF THE IMAGE

IN (a) .

D E F P G Q M R

C. QUADTREE REPRESENTATION OF THE BLOCKS
- IN (b).

FIG. 1. AN IMAGE, ITS MAXIMAL BLOCKS , AND THE CORRESPOND ING QLIAD T REE . BLOCKS
IN ThE IMAGE ARE SHADED .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-_______


